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Figure 1: Shows the interaction of thumb-to-finger interactions with two targets on the distal phalanx of the index finger on HPUL (a)
Shows using the collision volume that represents the thumb in a physic engine. In this example, the collision volume of the thumb
is colliding with both targets. (b) To better understand what happens, the spherical collision volume is replaced with raycasts. The
figure shows the cross-section of the raycasts and highlights the rays that are interacting with the targets in green. This raycast-based
approach is also further used to improve the accuracy of target selection. (c) Shows the number of participants who had utilized a
given ray when selecting the respective targets during the data collection study.

ABSTRACT

Hand Proximate User Interfaces (HPUI) on Head Mounted Displays
(HMD) leverage hand tracking to anchor content on the hand and
interact with it using thumb-to-finger interactions. Similar to many
other interaction techniques on HMDs, HPUI realizes these interac-
tions by combining simple geometry in game engines. This, in turn,
leads to accidental triggers, akin to the "fat-finger problem" on touch
screens. To address this, we explore and provide insight into how
the thumb’s surface interacts when using HPUI by approximating
the thumb’s surface with a large number of raycasts. We observe

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

Gl ’25, May 26-29, 2025, Kelowna, BC

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX. XXXXXXX

that different regions of the thumb are used when interacting with
different parts of the hand. The results also highlight the need to
consider the temporal component. We then propose approaches to
improving the precision of thumb-to-finger interactions on HPUI
and show that these improve target selection accuracy with denser
target layouts.

CCS CONCEPTS

* Human-centered computing — Virtual reality; Graphical user
interfaces; Empirical studies in HCI.

KEYWORDS

virtual reality, game engines, fat-finger, hand proximate user inter-
faces, thumb-to-finger interactions

ACM Reference Format:

Sharif AM Faleel, Rishav Banerjee, Omang Baheti, Khalad Hasan, and Pourang
Irani. 2025. What’s the Thumb Doing? Improving Precision for Thumb-to-
Finger Interactions on Hand Proximate User Interfaces. In Proceedings of


https://orcid.org/0000-0001-6979-6877
https://orcid.org/0009-0003-5620-9516
https://orcid.org/0000-0002-4815-5461
https://orcid.org/0000-0002-7716-9280
https://doi.org/XXXXXXX.XXXXXXX

Gl 25, May 26-29, 2025, Kelowna, BC

Graphics Interface 2025 (GI °25). ACM, New York, NY, USA, 14 pages.
https://doi.org/ XXX XX XX . XXXXXXX

1 INTRODUCTION

Head-mounted displays (HMDs) have gained attention as a tool for
everyday productivity and a potential smartphone replacement. Hand
Proximate User Interface (HPUI) has been proposed as a promising
solution to translating smartphone interactions to the interaction
space of HMDs [19]. These are interfaces where interactive elements
are displayed on and around the hand and thumb-to-finger gestures
are used to interact with them. Because of the visual component,
they do not suffer from the lack of discoverability like gestural
or voice interactions- one simply has to look at their hand and
tap with their thumb. While HPUI affords tactility, comfort, social
acceptability, and proprioception with extended usage [23], it suffers
from accuracy issues [21]. Similar to the fat-finger problem on touch
screens [31, 55], target selection with the thumb is imprecise even
when the comfortable interaction space primarily resides on the
surfaces of the other fingers.

Augmenting the hand with specialized hardware or using gloves
would be a potential solution for realizing thumb-to-finger inter-
actions on HPUI [7, 11, 36]. However, in practice, such augmen-
tations would be limited in their practical use, particularly when
considering HMDs as a day-to-day computing platform. Imagine
following a tutorial video while cooking and interacting with video
controls on HPUI - a glove with capacitive elements would not be
a practical choice here. As a result, hand pose estimation has be-
come a common approach for hand-based interaction [45]. As with
many other hand-based interactions on HMDs, HPUI, and similar
interaction techniques are also realized through physics- or game-
engines [24, 48, 60]. Hence, we focus on using such physics engines
for HPUI interactions.

Now, consider tapping the tip of the index finger and tapping
on the proximal phalanx of the little finger. The part of the thumb
that makes contact in these two instances would be different. Hence,
the geometry that represents the thumb would have to be large
enough to account for this. When interactive elements are placed
next to each other, which would be necessary to take advantage
of the interactive space on the fingers, the larger geometry of the
thumb results in more targets getting accidentally selected, as seen in
Figure 1 - the fat finger problem. To put it differently, the size of the
thumb’s collision geometry relative to the collision geometry of any
targets on the fingers is relatively large. There are two components
we can analyze to better understand and optimize the interaction
on HPUL First is the elements on the fingers the thumb would
interact with. Following the convention used by Unity Extended
Reality Interaction (XRI) Toolkit, we refer to these as interactables 1
However, these interactables can take many forms - they can be a
large continuous surface spanning multiple fingers [48], or small
elements only on one part of the finger [43, 58]. That is, unlike
the touch screen, it is not one fixed surface. On the other hand, the
thumb’s collision geometry, referred to as the interactor 2, would be
the same across a wide range of interactions on HPUI. This would
be the second component we could analyze. This is also unlike

'link to XRI Interactables
2link to XRI Interactors
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touch screens, which have much less information on what the finger
is doing, while with the hand-tracking-based solutions we use for
HPUI, we can closely monitor what the finger is doing. Hence, to
better understand what happens during interactions on HPUI, we
focus on this second approach - what the thumb does.

We start by collecting data on how users interact with targets on
HPUL. In particular, we are focusing on taps on on-finger targets. We
use the Unity game engine for our analysis. To get granular detail
on what happens during interactions, we use an array of ray casts
instead of collisions of simple geometries. The rays are cast in every
direction from the center of the interactor on the tip of the thumb
(see (b) in Figure 1). We observe that when targets are more densely
placed, there is a much higher error rate. Analysis of the ray casts
shows that the region of the thumb which is used to interact with dif-
ferent parts of the interaction space varies significantly. Inspired by
the touch screen interactions, we propose improvements in detecting
taps using thumb-to-finger interactions to reduce false positives. In
particular, we use an updated heuristic to rank the interactables and
also consider the temporal component of interactions. We finally
run a user study that shows the improvements to the accuracy on a
denser layout. Our core contributions are two-fold: (1) We provide
better insight into how the thumb interacts during thumb-to-finger
interactions based on using raycasts to model the thumb in a physics
engine. (2) Based on the insights we provide improvements for HPUI
that improve the accuracy of target selection on denser layouts.

2 RELATED WORK
2.1 Hand Proximate User Interfaces

Hand Proximate User Interface (HPUI) expands on the literature
on micro-gestures [16, 19, 22]. In particular, it expands on thumb-
to-finger micro-gestures [33, 52, 54]. In addition to the physical
comfort, thumb-to-finger interactions are also seen as more socially
comfortable when compared to other micro-gestures [22, 48]. How-
ever, a drawback of micro-gestures, and gestures in general, is the
lack of discoverability [2, 10, 42]. HPUI addresses this by taking
cues from the smartphone interaction and displaying the interactive
content directly on and around the hand [19]. In addition, the in-
teractions are similar to the now ubiquitous single-handed mobile
usage [35]. However, because of the biomechanics of thumb-to-
finger interaction, the display surface is non-contiguous, limited,
and changes shape as interactions happen [48]. To circumvent these
shortcomings, prior work has explored expanding in the interaction
space [3, 42] and also propose designs that take these limitations
into consideration [48]. Furthermore, recent work has also shown
that HPUI performs on par with other common unencumbered in-
teraction techniques on HMDs [21]. Given the proprioceptive and
tactile affordance of interacting with the hand [28, 29], HPUI has
also been shown to have better eyes-free affordance while also being
easy for novice users to start using the interface [23].

2.2 Detecting interactions on Head Mounted
Displays
The broad range of affordances with HMDs has resulted in a wide

range of interaction techniques and a broader range of approaches
to detect these interactions. When considering mobile and in-situ
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applications, for which HMDs are well suited, researchers have ar-
gued that such interactions must be unobtrusive, non-distracting,
comfortable, and efficient to use [17, 18, 26, 44, 53]. Unencumbered
interaction techniques are commonly preferred for this reason. When
considering hand interactions and micro-gestures in particular, there
are commonly two different approaches. First is to augment the
hand with sensing technologies, ranging from gloves [9, 34] and
rings [13, 61] to using bio-acoustic [40, 62] and bio-impedance [56]
sensing. The rings and similar wearables that are designed to be less
obtrusive often would only be able to detect a subset of the inter-
action space of thumb-to-finger interactions such as HPUIL. While
gloves would allow more precise and broader hand pose estima-
tion, they are often far more obtrusive. The second approach to
detecting hand interactions is the use of vision-based hand pose
estimation [63]. Its success has seen it being widely adopted by
commercial HMDs as well. While it may not be able to detect inter-
actions outside its field of view, its convenience makes it a practical
choice for hand-based interactions.

When detecting micro-gestures such as those used with HPUI,
the system could provide an output that indicates which gesture was
performed. However, this approach would limit the options to the
states only supported by the system. Alternatively, using the hand
pose estimation and allowing the designers to define how the hand
posture is used for different interactions allows for a richer set of
interactions. In fact, interaction techniques on HMDs are commonly
modeled using this approach. Using a physics engine, such as in
Unity, collision volumes or raycast are anchored to a tracked entity
like the hand [51], eye-gaze [6], head [49], etc. Following the physi-
cal interaction metaphor, interactions are modeled as these tracked
entities colliding with interactive virtual surfaces or objects which
are also represented by collision volumes. While accurate tracking
of the physical movements of the users is a large research topic in
its own right, there also has been significant research on understand-
ing [5, 14, 59] and improving the interactions [4, 12, 39] within such
physics engine based interactions. Prior work on HPUI and similar
interaction techniques also use a similar approach to detecting in-
teractions [19, 24, 50]. Often, the thumb is modeled using a sphere.
However, as stated in the introduction, trying to represent the whole
thumb surface using a single collision volume, results in incorrect
target selection. Prior work that uses this approach for microges-
tures has seen higher error rates, potentially caused by this [21]. We
liken this phenomenon to the fat-finger problem on touch screens.
However, the results from touch screens cannot be directly adopted
here as the interactive surface is not flat or static. Taking inspira-
tion from the work on understanding how users interact with touch
screens [31], our works explore how the thumb interacts with the
finger surfaces in HPUI.

3 DATA COLLECTION OF
THUMB-TO-FINGER INTERACTIONS ON
HPUI

To better understand what may cause the errors, we analyze which
part of the thumb’s surface interacts with a given target. Insights
from this would provide a basis for improving performance and also
reducing the error rate with HPUI interactions. The interaction space
on HPUI provides for targets on the fingers, between fingers, and off
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Figure 2: The sparse layout Figure 3: The dense layout used

used in the studies. in the studies.

fingers as well [19, 48]. For simplicity, we limit the current analysis
only to the volar surface of the fingers.

3.1 Targets and tasks

Figure 2 and Figure 3 show the targets and the layout we used for data
collection. We used two sizes of targets. Similar to prior work [19],
the first is 1cm X 1cm square, which is expected to approximate the
finger’s width. The second size we used is a Smm x Smm square,
approximately half the finger’s width. The targets were also laid
out in two different configurations. With the larger targets, only one
was placed on a given phalanx, referred to as the sparse layout. The
smaller targets were laid out to be more dense, with two targets
on a phalanx, referred to as the dense layout. This allows us to
see the impact of the density of displayed targets. In all cases, the
target on a given phalanx was anchored to the adjoining joints of a
given phalanx. That is, targets on the distal phalanx were anchored
relative to the tip and distal interphalangeal joint of the finger, and
the targets on the intermediate phalanx were anchored relative to the
distal interphalangeal joint and proximal interphalangeal joint. We
excluded the location closest to the proximal phalanx for the index,
middle, and ring finger with the dense layout, and avoided placing
targets on the proximal phalanx of the little finger in both layouts.
As noted by prior studies [19, 48] as well as during our pilots,
some participants struggle to reach these regions with their thumb
during thumb-to-finger interaction and are generally uncomfortable
to interact with [33, 41]. Further, we are only considering targets on
the volar side of the fingers. This resulted in 11 targets on the sparse
condition and 19 targets on the dense condition.

The location of the interactor was on the distal phalanx of the
thumb. It was placed 90% along the segment from the distal joint to
the thumb tip. The ray casts were made to be spaced equally origi-
nating from the location of the interactor. To determine the ray direc-
tions, points were placed on a sphere aligned to the thumb’s distal
phalanx’s orientation using the Fibonacci grid approach. Distributing
points on a spherical surface is a well-known mathematical prob-
lem [30]. The Fibonacci grid is a well-known solution widely used
for various applications. Using an approach like latitude-longitude
coordinates would result in more points clustered at the poles [25].
We placed 5184 points, which is the same number of points that
would result from using latitude-longitude coordinates with points
spaced 5° apart along both latitude and longitude axes. A ray was
cast from the location of the interactor to each point, resulting in
5184 rays.
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For this analysis, we consider the following axes on the thumb
(also seen in Figure 5):

e Y: orthogonal to the distal phalanges thumb surface.

e Z: Along the joint - from the IP joint to the tip of the thumb.

e X: Right from the thumb when looking at the back of the
thumb. This would be the cross-product of the Y and Z axes.

The collision geometry of each target is made to match the visuals
of the targets. Throughout the study, we record all the rays that
make contact with any of the target interactables. A selection of a
target happens when any of the rays intersect any of the colliders
representing a target and the distance of the ray is below a threshold.
We refer to this threshold as the selection distance threshold. In this
study, it was set to 20mm. For each ray, when it collides with any of
the targets, we record the distance from the origin of the ray, which
is the position of the interactor itself to the point of collision, and
which target it made contact with. In a given frame, when more than
one target is within the distance threshold, the one with the shortest
ray is treated as the target being selected. No other targets would be
selected until the tap gesture ends, i.e., when no targets are within
the selection distance threshold for any of the rays.

We use a simple sequential tapping task. The participants were
expected to select the target highlighted in red. All other targets
would be white. When any target gets selected, it flashes green and
an audio cue is played. If the participant maintains contact with the
target, it will remain a lighter green hue. A trial in this data collection
study is when the participant successfully selects the highlighted
target. However, the trial progresses only when the tap gesture ends.
This was done to ensure data of the complete tap gesture is recorded.

A half-start approach was used during the data collection study,
where one participant starts with the dense condition and another
starts with the sparse condition. Participants completed one condition
before they moved to the next one. In the sparse condition, which
had larger targets, each target was selected 20 times, in the dense
condition with the smaller targets, each was selected 10 times. The
sequence of targets presented to the participant was randomized such
that the same target was not presented in two consecutive trials.

Figure 5: The plane of the
(right) thumb and axis used
during the study Section 3

Figure 4: The setup used for
the studies.

3.2 Apparatus

Computer vision-based hand-tracking solutions still lack the fidelity
necessary to test the granular thumb-to-finger interaction used in
our study. However, we expect the ongoing efforts on improving
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hand-tracking using vision-based approaches to achieve better real-
time performance to enable using such interactions. Hence, we use
a Vicon motion tracking system with 13 cameras for hand-tracking
as seen in Figure 4. The input from the 13 cameras are synthesized
via the Vicon Nexus 2.10.3 software and streamed via a custom
Python web-socket implementation for real-time tracking. We also
track the position of the HMD with the same tracking solution so
that the hand and the HMD share the same coordinate space. For the
studies, we use the Meta Quest 3 HMD. The experiment application
is implemented in Unity and was executed using the Meta Quest Link.
This was done to avoid any performance penalties. We also used the
Unity Experiment Framework to manage the experiment [8].

3.3 Participants

The study was approved by the Research Ethics Board of local
universities. Data was collected from 14 participants (10 male, 4
female). The average age of the participants was 26.4 (SD = 3.89).
12 of the participants were right-handed, and 2 were left-handed.
All participants have had some experience using HMDs. They had
rated their experience on a 7-point Likert scale, with 1 being “no
experience” and 7 being “A lot”. The median score was 3.5 (M =
3.57,8D =1.69). We also asked participants to rate their experience
with hand tracking on the same 7-point Likert scale. The median
score was 2.5, with two participants reporting a score of 1.

3.4 Procedure

When a participant arrived and completed the consent form, they
were asked to complete a brief demographics questionnaire. Fol-
lowing an explanation of the procedure, the participants are asked
to wear the marker glove on top of a disposable glove. They are
asked to be seated inside the capture volume of the Vicon motion
capture system, where we ensure the tracking software is calibrated
to their hands. They were then asked to wear the VR headset. The
participants were asked to be as "fast and accurate" as possible.
They are first presented with a practice block which had the same
number of trials as the first block to make the participant familiar
with the interaction technique and the experiment setup. They are
then administered the trials of the study. To avoid fatigue, the trials
are separated into four blocks, two blocks for each condition. The
participants are provided a break between each block.

3.5 Analysis

3.5.1 Overall Performance. We first report the overall perfor-
mance of the observed data. Note that we primarily report descriptive
statistics here for completeness, as the focus is on what happens dur-
ing the interactions. We first compute the error rate. In our analysis,
we refer to error rate as the ratio between the number of errors made
by a participant for a given condition and the number of correct
selections made:
#of errors
error rate = —————
# selections
Figure 7a shows the summary of the error rate. The dense layout
had a mean error rate of 0.41 (SD = 0.17) compared to the 0.11
(8D = 0.08) for the sparse layout. Figure 7a shows the summary of
the selection time, i.e., the time to make the correct selection once
the target has been highlighted. Here, the dense layout had a mean
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Index Proximal
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Dense layout

Index Intermediate 1
Index Intermediate 2
Index Proximal 1

Figure 6: The example targets referred to in Section 3.5 and Figure 13.

selection time of 1.24s (SD = 0.36s) and the dense layout had a mean
selection time of 0.81s (SD = 0.15s).
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Sparse Dense
Target Layout

Sparse Dense
Target Layout

(a) The error rate of the two differ- (b) The selection time of the two
ent layouts. different layouts.

Figure 7: The overall performance of the data collected. Shows
standard error bars.

3.5.2 Analysis of Regions. We first explore what happens on
the thumb when the thumb is in contact with the interactable. In this
section, we primarily focus on the tap gesture that resulted in the
correct selection of the highlighted target. Further, for this analysis,
we are considering the frame that had the largest number of rays
making contact with the intended interactable. This gives us the
most amount of information on what happened when the target was
selected. For each gesture frame, of the 5184 rays that are cast, we
look at which of them made contact with the intended interactable.
To better visualize the data, we mirrored the results from the left-
hand participants around the Z-axis (see Figure 5). Figure 8 shows
the number of participants who used a given ray when selecting the
respective target for each target in the sparse layout. Figure 9 shows
the same but for the targets on the index finger for both dense and
sparse layouts. Each row shows the rays used for each phalanx of
the index finger.

Figure 9 shows that the rays used for the dense targets are gen-
erally less compared to selecting targets in the sparse condition. At
the same time, the rays used for selecting targets on a given phalanx
during the dense condition are also a subset of the rays used for the
larger targets in the sparse condition on the same phalanx. Another

observation we make is that the part of the thumb that makes contact
also greatly differs. Overall, when selecting a target placed on the
volar side of a finger, the ulnar side of the thumb is being used the
most. When interacting with the distal phalanx of any finger, we see
that there is a higher variance in which part of the thumb is being
used to make a selection. Whereas when the targets are closer to the
palm, the region is more focused. This could be explained by the
biomechanics of the thumb-to-finger interactions, where with the
distal phalanx, as all three joints of the finger are involved, there are
more degrees of freedom. Which results in more directions in which
the thumb can connect with the tip of a finger. However, with the
proximal phalanx, for example, there is only one joint. The lesser
degrees of freedom and the lesser reach of the thumb result in fewer
directions or ways the thumb could connect with a target placed on
that phalanx.

3.5.3 Analysis of Gestures. In this section, we explore the possi-
ble causes of the higher number of errors seen in Section 3.5.1. In the
data collection study, the interaction happens at the very beginning
of the gesture. That is, the decision of which target to select is made
in the very beginning based on the distance - where the interactable
with the shortest distance is selected. This could be one reason for
the higher number of errors. Figure 10, shows the distance of the
ray that recorded the shortest distance change over time. Note that,
the distance of a ray in our analysis is the distance from the origin
of the ray to the point when the ray makes contact with an inter-
actables collision volume. Similarly, Figure 11 shows the change in
the number of rays. We see that throughout the gesture the shortest
distance recorded follows the “U” shape, and the number of rays
has an up-side-down “U” shape. Presumably, using the information
when the shortest distance or the highest number of rays from the
whole gesture could result in better performance. To assess this, we
extracted the trials that had recorded any number of errors. This
resulted in 1051 trials. That is, in these trials, more than one tap
gesture was performed to correctly select the intended target. If the
intended target had been selected on the first tap gesture, it would not
have been counted as an error. We then consider the shortest distance
during the entire tap gesture or the highest number of rays during
the entire tap gesture to decide which interactable should be selected.
Note that, the results in Section 3.5.1 are based on the distance at the
beginning of the gesture. That is, the decision of which target should
be selected was made in the first frame of the gesture. We analyze
if using these metrics, the shortest distance or the number of rays
from throughout the gesture, would have resulted in the intended
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Figure 8: Each plot shows the rays used when in contact with each target in the sparse condition. For each target, the plot shows the
number of participants who used a given ray when selecting the respective target. The rays are from the frame where the highest
number of rays were in contact with the intended target during a given tap gesture.
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Figure 9: Each plot shows the rays used for the target on the
index finger. For each target, the plot shows the number of
participants who used a given ray when selecting the respective

target. In each row, the first is the target in the sparse condition.
The remainder corresponds to the targets in the dense layout.

The rays are from the frame where the highest number of rays
were in contact with the intended target during a given tap
gesture.

targets being selected in the first tap gesture. Figure 13 shows one
trial where the correct target was selected in the second tap. In 69.9%

of these 1051 trials, the intended target was selected in the first tap
gesture if the shortest distance from the whole gesture is considered.
When the number of rays was used, it showed that 74% of the trials
would not have had errors. In 6.1% of the trials, the intended target
had recorded the highest number of rays but not the lowest distance
in the first tap gesture. In 2% of the trials, the intended target had
recorded the lowest distance but not the highest number of rays in
the first tap gesture. Figure 13 shows an example where the first
gesture has recorded the highest number of rays in the first gesture,
but not the lowest distance. This implies that using this information
of the shortest distance and the largest number of rays in the entire
gesture would be a better indicator of which target is to be selected.
This also further elucidates the analysis in Section 3.5.2, where we
consider the frame with the largest number of rays interacting with
an intended target.

Another observation we made during this analysis is that the
shortest distance is much lower than the 20 mm threshold we used
during the data collection. The Figure 14 shows the largest of the
mean distance of a given ray for each participant. Similar to the
analysis in Section 3.5.2, here also we are considering only the frame
with the largest number of rays making contact with the intended
interactable. We consider the largest value as opposed to taking the
mean as different users have different finger thicknesses. Having a
shorter distance could disadvantage users who have larger fingers.
While this is a factor that can impact performance, this work focuses
on building a broader understanding of the interactions and defers
personalization and its advantages to future work. The mean of these
largest distances was 13.8 mm. Similar to the above analysis, we
also looked at how many of the trials with errors would have resulted
in no errors if the same selection process used when collecting data
is used but with the shorter distance threshold. In this case, 13.9%
of trials would have resulted in the first tap gesture selecting the
intended target.

Another component we considered was the time to select a target.
The Figure 12 shows the histogram of the time it took to make
the first erroneous selection since the trial started. We can see that



What'’s the Thumb Doing?

Gl 25, May 26-29, 2025, Kelowna, BC

Shortest ray distance (mm)
Number of rays

Count

000 005 010 015 020 025 030 035 040 000 005 010 015

time (s)

Figure 10: Shortest ray distance when a
ray is interacting with the intended target
plotted over time for sample tap gestures.

Tap 1 Tap 2

20

~
o

18 1

T
S
=}

@
o

16 1

@
=}

144

number of rays

100

shortest ray distance {(mm)

127 I 120

104 140

T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6

time (s)
— Dense - Index Proximal 1 — Raydistance
Dense - Inclex Intermecliate 1 === Number of rays

—— Dense - Inclex Intermecliate 2

Figure 13: An example trial with the dense condition where the
intended target was Index Proximal 1 (see Figure 6). Shows the
distance of the shortest ray and the number of rays over time.
The trial had one error (Tap 1), where Index Intermediate 1 was
selected. Tap 2 is the gesture that resulted in the correct target
being selected. The red horizontal line is the 13.8 mm threshold
computed in this section. The blue vertical line was when the tap
event was triggered during the data collection.

selection had happened as soon as the trial had started. This happens
mostly as a result of the next target being right next to the selected
target. As the participant moves away, the selection ends, thereby
starting the next trial. The adjacent target immediately gets selected
as the trial starts. Hence, in addition to using the information of
the whole gesture, a possible debounce threshold also needs to be
considered to reduce such errors.

We also considered the time it takes to complete a gesture. Fig-
ure 15 shows the time of the tap gesture when the correct target was
selected with the 20 mm threshold used for the data collection and
the 13.8 mm threshold computed above. As expected, the time of
the tap gesture decreases with the distance.

Figure 11: Number of rays in contact with
the intended target plotted over time for
sample tap gestures.

time (s) time (s)

Figure 12: Histogram of time it took to
make the first erroneous selection since
the trial started.

Additional analysis of the data can be seen in Appendix A. In
Section 4, we consider all of these observations to propose improve-
ments to how a target is selected.

4 IMPROVEMENTS FOR TAP DETECTION
FOR HPUI

Based on the analysis in Section 3.5, we consider two improvements
to the detection. The detection mechanism can be decomposed into
two components. The first is detecting and ranking the interactables
within the selection radius during a given frame. The second is
to consider the temporal component. That is given a sequence of
frames, it would manage the states and decide which interactable
would receive the corresponding event. We propose improvements
to both of these components here.

4.1 Improving the Ranking Mechanism

During the data collection study in Section 3, a target was determined
based on the shortest ray. That is, the shortest ray distance of a given
interactable was used as a score, and the interactable with the lowest
score ranked at the top. Here we include the number of rays as
another component of the score used to rank the interactables. For

the interactable i during the frame j, when d' s;l ortest_ray 1S the distance

of the shortest ray as used in Section 3 and n',{lys is the number of rays

that interacted with the collider of the interactable i and Nr]ays is the
total number of rays interacted with any interactable in frame j, we
express the score as a ratio between the distance and the normalized
number of rays:
1]
scoreij — sZorifst_ray (1)
Nyays

4.2 Improving State Management

The results from the data collection clearly show that using the first
frame is not ideal, and can result in errors. Taking inspiration from
the literature on three-state virtual keyboards [20, 37], we propose
a delayed activation. In other words, the gesture is triggered on
"finger-up" instead of "finger-down". The algorithm used for this
is outlined in algorithm 1. In simpler terms, when a new gesture
starts, this algorithm tracks all the interactables that get selected
(line 16). When the gesture ends (line 3), if the time of the gesture
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Figure 14: Each plot shows the computed distances of the rays used when in contact with each target in the sparse condition. The rays
are from the frame where the highest number of rays were in contact with the intended target during a given tap gesture.
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Figure 15: Violin plot of the time taken to select a target during
the data collection (with 20 mm threshold), and the time it would
have taken if the 13.8 mm computed threshold was used.

(line 4) is between the debounce threshold (Ty,pounce) and tap time
threshold (74p), it triggers the tap event (line 7). The debounce
threshold eliminates accidental tap triggers seen in Figure 12. We
include a tap time threshold to prevent users from pressing down
and micro-adjusting to select the correct target. Note that our focus
is on tapping behavior. However, such complex gestures are out of
the scope of the current exploration. This requires that Ty.pounce 1S
smaller than T,,. The interactable that receives the tap event would
be the interactable that had the lowest score in the time window of
the gesture (line 6).

5 COMPARING IMPROVED TAP DETECTION

We executed a follow-up user study to validate the results of the
improvements made to the tap detection algorithm.

5.1 Task and Study Design

We use the same task we used in Section 3 with the same layout and
sizes of targets. However, we compare the following factors:

Algorithm 1: Tap algorithm for HPUI

Input  :leyrrent /* Interactables selected in current frame =*/

/* Data tracked across frames */
Tracked :1;,4cked /* Tracked interactables x*/
Tracked : F},creq /* Tracked frame indices x/

teurrent <— current time;
if Icurrent =0 then

1
2
3 if Iypqckea # O then
4 tgesture = lcurrent —lstart’
5 if tgesture > Taebounce & tgesture <= Trap t_l}en .
6 itarget =1 € lpackeq SUch that score' < score™ Nx € Iiqereq VJj €
Firacked’
7 Trigger tap on irarger;
8 end
9 liracked < 0
10 Firacked < 0;
1 end
12 else
13 if I qckeqd = 0 then
14 | tstart < teurrents
15 end
16 liracked <= leurrent Ultracked’s
17 Firacked < Firackea U current frame index;
18 end

Score: Distance only score vs Improved score (Section 4.1).
State management: Simple gesture (where Ty,pounce =0 and
Tiap = ) similar to Section 3 vs Improved tap detection
(Section 4.2)

e Layout: Same as Section 3; sparse vs dense.

For the improved tap detection, we use 50ms for T.pounce and
300ms for T;4p. Also, the target selection distance threshold was
set to 13.8mm, which is the 90" percentile of distances used by
all the rays used in any gesture from the data collection study (see
Section 3.5). The 90th percentile was chosen based on trial and error,
where any lower distances had higher false negatives. Note that the
combination of distance only and simple gesture would function as
the baseline, with the combination of improved score and improved
tap gesture would be the combined solution we are comparing.

We counterbalanced on the score and state management factors.
This way the participants would complete both layouts for each
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combination of the above two factors. However, half the participants
did the dense layout first for all four combinations, while the other
half did the sparse first. To avoid fatigue from playing a role, each
target on the sparse layout was selected 6 times and each target on
the dense layout was selected 3 times.

The procedure and the apparatus were the same as the data col-
lection study in Section 3.

5.2 Participants

Here also, the study had been approved by the local university’s
Research Ethics Board. Data was collected from 18 participants
(11 male, 7 female). The average age of the participants was 24.2
(8D =3.39). 17 of the participants were right-handed, and 1 was
left-handed. They had rated their experience with HMDs on a 7-
point Likert scale, with 1 being “no experience” and 7 being “a
lot”. The median score was 2 (M =2.5,5D = 1.61) with 5 rating
their experience with a score of 1. We also asked participants to rate
their experience with hand tracking on the same 7-point Likert scale.
The median score was 1 (M =1.7,5D = 1.2), with 8 participants
reporting a score of 1. We analyzed the correlation of the metrics
analyzed below with the responses from the survey but found no
interesting patterns, so these results are not included for brevity.

5.3 Results

5.3.1 Error rate. Similar to Section 3.5, here also we analyze
the error rate. For the analysis, we combined the score and state
management factors into one factor we refer to as condition. As
the data violated the assumptions for RM-ANOVA, we analyzed
the data with Friedman’s test and used Kendall’s W to compute the
effect size’. We analyzed the data for the dense layout and sparse
layout separately. With the sparse layout, the condition did not have
a significant effect on the error rate (y23 = 2.277, p = 0.43, small
effect size Kendall’s W = 0.05). For the large targets, the combined
approach (improved score + improved tap) reports the lowest mean
error rate (M =0.085,5D = 0.05). Interestingly, the improved score
(improved score + simple-gesture (M = 0.11,8D = 0.05)) and im-
proved tap (distance only + improved tap (M = 0.11,5D = 0.10))
had a slightly worse error rate than the baseline, i.e. distance only
+ simple-gesture (M = 0.09,SD = 0.03). Whereas with the dense
layout, the condition had a main effect (¥23 = 9.42, p = 0.02, small
effect size Kendall’s W = 0.17). We then conducted a post-hoc anal-
ysis with Bonferroni correction for the dense layout. The base-
line (M = 0.32,SD = 0.1) had the highest error rate among the
conditions and the combined condition had the lowest error rate
(M =0.23,SD = 0.11). The only significance we observe in the
post-hoc analysis of the dense layout is also between the baseline
condition and the combined approach. In other words, the improved
score (improved score + simple-gesture (M = 0.26,SD = 0.09)) or
improved tap (distance only + improved tap (M = 0.28,5D = 0.15))
on their own reduced the error rate, but did not show a significant
improvement, only when combined we observe a significant im-
provement to the error rates. The summary of the results can be seen
in Figure 16.

3For the interpretation of effect sizes, Cohen’s guideline was followed [15]
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5.3.2 Selection time. For completeness, we also analyzed the
time to make a selection. The selection time is computed as the time
for the selection event to be triggered by the user after the target is
highlighted. Similar to the error rate, the selection time also violated
the assumptions of RM-ANOVA. Hence, here also we conducted
Friedman’s test and use Kendall’s W for effect size. Here also we
analyze the two layouts separately. The condition did not have a
main effect with either sparse layout (y%3 = 4.38, p = 0.22, small
effect size Kendall’s W = 0.07) or dense layout (x*3=1.5,p=0.68,
small effect size Kendall’s W = 0.025). With the dense layout, using
only the improved score shows the lowest time (M = 1.02s,SD =
0.12s) followed by the baseline (M = 1.05s,SD = 0.14s). Similarly,
with the sparse layout, the lowest time is seen with the baseline
(M =0.79s,8D = 0.07s) followed by the condition where only the
improved score was used (M = 0.81s,SD = 0.06s). That is, even
though not significantly different, the use of the improved tap slightly
increases the time to select. This could be explained by how the
selection time is computed - with the simple-gesture, the event is
triggered at the very beginning of the tap gesture. Whereas with the
improved-tap, the event is triggered when the gesture is completed.
Figure 17 shows the summary of the results. Though not significant,
the improved tap increases the selection time.

6 DISCUSSION

6.1 Exploration of Factors Influencing Accuracy in
HPUI

The aim of our work was to understand what happens during interac-
tion with HPUI. In addition to providing insight into what happens
as interactions take place, the raycasts-based approach also provides
mechanisms to further improve the selection accuracy. However,
contrary to our expectations based on the analysis of the gestures
( Section 3.5.3), we did not observe a significant improvement with
the larger target sizes. Though it is worth noting that the error rate
observed with the proposed improvements (8.5%) is much lower
than the error rate reported by Faleel et al. [21] (19%). But this could
potentially be a result of the different tasks employed, where Faleel
et al. [21] used a transcription-like task while we used a simpler
target selection task. Whereas Huang et al. [33] show significantly
lower error rates even on layouts similar to the dense layout we have
used. Here the difference could be a result of the approach they used
to detect interactions - where they used a more controlled setup for
detection which may not generalize.

With the dense layout of targets, we see a significant improvement
in the error rates. But only when the proposed improvements are
combined. The error rate of 28% with the dense targets would still be
relatively high in practice. Further research is required to enable the
selection of such denser layouts with the hand pose estimation-based
approach. Hand pose estimation is a rapidly evolving area of re-
search separate from our current investigation [1, 45], which is why
we opted to use a motion-tracking system instead. However, ongoing
advancements in hand pose estimation could enhance the applica-
bility of our exploration by enabling more complex and accurate
interactions. We had only considered the temporal component (see
Section 4.2) and improving the heuristic (see Section 4.1). While we
did not directly compare the impact of different distances, we see
that there error rates for both types of targets are much lower in the
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Figure 16: Summary of the error rate results. Shows the stan-
dard error bars. In addition to the significance shown, all Sparse
layout conditions were significantly different from all Dense lay-
out conditions.

follow-up study in Section 5 when compared to the data collection
study Section 3. In Section 3 a selection distance threshold of 20 mm
was used, whereas in Section 5 it was set to 13.8mm. However, there
are other factors we had not explored that could further improve the
performance of the target selection. Our analysis emphasizes a few
other factors:

e The use of different distances for each ray to emulate a shape
different from a sphere (see Figure 14).

e Using dynamic information such as the trajectory of the
thumb relative to the interactables to choose a different set of
rays (see Figure 20) or heuristics.

e Personalizing the values based on the user characteristics (see
Figure 18 and Figure 19).

Future work would further explore these factors and how they can
be used to improve the accuracy of selecting smaller denser target
layouts.

The ranking heuristic we propose ( Section 4.1) can also be un-
derstood as having a better approximation of the area of contact
and distance to improve the accuracy of selections. Most interaction
techniques in HMDs that use physics engines often use the distance
as a primary metric when making decisions when multiple possible
targets can be selected [4, 39, 51]. In addition to the distance, we
also consider the number of rays. The number of rays on its own
only provides the angular area, or solid angle, as the rays are spaced
equally. Whereas the heuristic in Equation 1 can be seen as prior-
itizing the target closest to the interactor with the largest angular
area. Finally, to ensure our findings are accessible by researchers
and developers, we have integrated our results with the open-source
HPUI-Core framework 4.

4HPUI-Core on Github
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Figure 17: Summary of the time results. Shows standard error
bars.

6.2 Comparison to Solutions from Related
Interaction Techniques

In this section, we situate the proposed techniques within the related
literature. Thumb-to-finger interactions on HPUI share similarities
with touch screen interactions, such as the fat-finger phenomenon,
where finger occlusion and touch ambiguity reduce accuracy. On
touch screens, researchers have shown that the posture of the finger
relative to the screen has an impact on the accuracy [31, 32]. How-
ever, these insights cannot be directly translated to HPUI because the
interactions are not on a static two-dimensional surface. In addition,
as with many other interaction techniques on HMDs, interactive ele-
ments on HPUI can take many shapes [24, 48] and sizes [48, 50, 60].
Irrespective of the differences, the interactions are still taps. In fact,
algorithm 1 in particular is similar to some of the related work that
explores interactions on touch screens [20, 37, 38]. They also share
similarities with solutions for mid-air target selection in VR and
AR [39, 46], addressing issues like human motor inaccuracies and
unintended interactions [27, 57, 59]. Future work can further expand
on the similarities to address the fat-finger problem on touch screens.
Our approach to analyzing dense raycasts could also be of use with
other interaction techniques where accuracy is a concern.

6.3 Limitations and Future Work

We have only considered targets along the volar side of the finger of
the one size within any given block. It is unclear how this would af-
fect the performance when the density is increased around the finger,
such as placing the target on the radial side of the finger or when
different sizes are combined. We also have only considered the on-
finger targets; off-finger targets may need additional consideration.
Future work would need to further explore such different layouts and
combinations. It should also be noted that our participants are young,
and care should be taken when our results are further generalized to
a larger population.
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In contrast to touch screens, which may require indirect visualiza-
tion to mitigate thumb occlusion [47, 55], HMDs offer affordances
that enable enhanced visualizations. For instance, the thumb could
become transparent, and a cursor could appear when the user hovers
over targets. This approach could facilitate more intuitive eyes-on
interactions. However, further research is needed to assess how this
would impact the eyes-free affordance of thumb-to-finger interac-
tions with HPUI [23].

7 CONCLUSION

In this paper, the interaction dynamics of Hand Proximate User Inter-
faces (HPUI). Our research addressed the high error rate of thumb-
to-finger gestures on HPUI which shares similarities to the fat-finger
problem on touch screens. By utilizing a fine-grained method of
casting a multitude of rays from the thumb, we gained more granular
insights into the interaction process, shedding light on how different
portions of the thumb naturally interact with varying regions of the
hand. Our analysis led to an enhanced interaction detection model
that incorporates both spatial and temporal dimensions of thumb-to-
finger interactions. We show the proposed approach improves the
accuracy of denser targets in a follow-up user study. Further, our
detailed analysis of thumb interaction behavior can inform future
designs and implementations of thumb-to-finger-based interaction
like HPUI on HMDs.
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What'’s the Thumb Doing?

A APPENDIX

We provide additional analysis from the data collected in Section 3.
Figure 18 shows the number of rays used to select the index distal
(see Figure 6) target in the sparse layout for each participant. Note
that each target in the sparse condition was selected 20 times. Fig-
ure 19 shows the same for the proximal phalanx of the index finger
in the sparse layout condition (see Figure 6).

Number of trials

Figure 18: Each plot shows the rays used when selecting the
Index Distal target in the sparse layout (see Figure 6) for each
participant. For each participant, the plot shows the number
of trials during which a ray was in contact with the intended
target. The rays are from the frame where the highest number
of rays were in contact with the intended target during a given
tap gesture.

Given the observation that not all rays are used when selecting
a given target, we can reduce the number of the ray cast based on
which target is to get selected. The Figure 20 shows the “cones”
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Figure 19: Each plot shows the rays used when selecting the
Index Proximal target in the sparse layout (see Figure 6) for each
participant. For each participant, the plot shows the number
of trials during which a ray was in contact with the intended
target. The rays are from the frame where the highest number
of rays were in contact with the intended target during a given
tap gesture.

of raycasts when interacting with a target on a given phalanx. The
centroid black arrow is the mean direction of all rays used to select
any of the targets by any participant. The threshold of the cone
was computed by getting the 90% percentile ray direction. This
further validates our observation in Section 3.5.2 that the region of
the thumb that gets used to select a target differs based on which
phalanx the thumb is interacting with.
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Figure 20: The ‘“cone” of rays extracted from the all the rays
interacted with a given target placed in the respective phalanx.
The black arrows show the centroid of the “cone”.
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